
Chapter 22 

Electric Fields 



22.2 The Electric Field: 
The Electric Field is a vector field. 

 

The electric field, E, consists of a distribution of vectors, 

one for each point in the region around a charged object, 

such as a charged rod.  

 

We can define the electric field at some point near the 

charged object, such as point P in Fig. 22-1a, as follows:  

 

•A positive test charge q0, placed at the point will 

experience an electrostatic force, F.  

 

•The electric field at point P due to the charged object is 

defined as the electric field, E, at that point: 

 

 

 

 

 

The SI unit for the electric field is the newton per 

coulomb (N/C). 



22.2 The Electric Field: 



22.3 Electric Field Lines: 

• At any point, the direction of a straight field line or 

the direction of the tangent to a curved field line 

gives the direction of at that point. 

 

• The field lines are drawn so that the number of lines 

per unit area, measured in a plane that is 

perpendicular to the lines, is proportional to the 

magnitude of E. 

 

Thus, E is large where field lines are close together 

and small where they are far apart. 



22.3 Electric Field Lines: 



22.4 The Electric Field due to a Point: 

To find the electric field due to a point charge q (or charged particle) at any 

point a distance r from the point charge, we put a positive test charge q0 at that 

point. 

 

 

The direction of E is directly away from the point charge if q is positive, and 

directly toward the point charge if q is negative. The electric field vector is: 

 

 

 

 

The net, or resultant, electric field due to more than one point charge can be 

found by the superposition principle. If we place a positive test charge q0 near 

n point charges q1, q2, . . . , qn, then, the net force, Fo, from the n point charges 

acting on the test charge is 

 

 

The net electric field at the position of the test charge is 



Example, The net electric field due to three charges: 

From the symmetry of Fig. 22-7c, we 

realize that the equal y components of our 

two vectors cancel and the equal x 

components add. 

 

Thus, the net electric field at the origin 

is in the positive direction of the x axis and 

has the magnitude 



22.5 The Electric Field due to an Electric Dipole: 



22.5 The Electric Field due to an Electric Dipole: 

From symmetry, the electric field E at point P—and also the fields E+ and E- due to the separate 

charges that make up the dipole—must lie along the dipole axis, which we have taken to be a z axis. 

From the superposition principle for electric fields, the magnitude E of the electric field at P is 

The product qd, which involves the two intrinsic 

properties q and d of the dipole, is the magnitude 

p of a vector quantity known as the electric 

dipole moment of the dipole. 



Example, Electric Dipole and Atmospheric 

 Sprites: 
We can model the electric field due to the charges 

in the clouds and the ground 

by assuming a vertical electric dipole that has 

charge -q at cloud height h and charge +q at 

below-ground depth h (Fig. 22-9c). If q =200 C 

and h =6.0 km, what is the magnitude of 

the dipole’s electric field at altitude z1 =30 km 

somewhat above the clouds and altitude z2 =60 

km somewhat above the stratosphere? 

Sprites (Fig. 22-9a) are huge flashes that occur far 

above a large thunderstorm. They are still not well 

understood but are believed to be produced when 

especially powerful lightning occurs between the 

ground and storm clouds, particularly when the 

lightning transfers a huge amount of negative 

charge -q from the ground to the base of the 

clouds  (Fig. 22-9b). 



22.6 The Electric Field due to a Continuous Charge: 

When we deal with continuous charge distributions, it is most convenient to 

express the charge on an object as a charge density rather than as a total charge. 

For a line of charge, for example, we would report the linear charge density 

(or charge per unit length) l, whose SI unit is the coulomb per meter. 

 

Table 22-2 shows the other charge densities we shall be using. 



22.6 The Electric Field due to a  

Line Charge: 

We can mentally divide the ring into differential elements of 

charge that are so small that they are like point charges, and 

then we can apply the definition to each of them. 

Next, we can add the electric fields set up at P by all the 

differential elements. The vector sum of the fields gives us 

the field set up at P by the ring. 

Let ds be the (arc) length of any differential element of the 

ring. Since l is the charge per unit (arc) length, the element 

has a charge of magnitude 

This differential charge sets up a differential electric field dE 

at point P, a distance r from the element. 

 

 

 

 

 

All the dE vectors have components parallel and 

perpendicular to the central axis; the perpendicular 

components are identical in magnitude but point in different 

directions. 

The parallel components are 

Finally, for the entire ring, 



Example, Electric Field of a  

Charged Circular Rod 

Fig. 22-11 (a) A plastic rod of charge Q is a circular 

section of radius r and central angle 120°; point P is the 

center of curvature of the rod. (b) The field components 

from symmetric elements from the rod.  

Our element has a symmetrically located 

(mirror image) element ds in the bottom half of 

the rod. 

If we resolve the electric field vectors of ds 

and ds’ into x and y components as shown in we 

see that their y components cancel (because 

they have equal magnitudes and are in opposite 

directions).We also see that their x components 

have equal magnitudes and are in the same 

direction. 



22.6 The Electric Field due to a Charged Disk: 

We need to find the electric field at point P, a distance z from the disk along its central 

axis. 

Divide the disk into concentric flat rings and then to calculate the electric field at point 

P by adding up (that is, by integrating) the contributions 

of all the rings. The figure shows one such ring, with radius r and radial 

width dr. If s is the charge per unit area, the charge on the ring is 

 

 

 

 

 

We can now find E by integrating dE over the surface of the disk— that is, by 

integrating with respect to the variable r from r =0 to r =R. 

 

 

 

 

 

 

 

 

If we let R →∞, while keeping z finite, the second term in the parentheses in the above 

equation approaches zero, and this equation reduces to 



22.8: A Point Charge in an Electric Field 

When a charged particle, of charge q, is in an electric field, E, set up by 

other stationary or slowly moving charges, an electrostatic force, F, acts 

on the charged particle as given by the above equation.  



22.8: A Point Charge in an Electric Field:  

 

Measuring the Elementary Charge  Ink-Jet Printing 



Example, Motion of a Charged Particle in an Electric Field 



22.9: A Dipole in an Electric Field 

When an electric dipole is placed in a region 

where there is an external electric field, E, 

electrostatic forces act on the charged ends of 

the dipole. If the 

electric field is uniform, those forces act in 

opposite directions and with the same 

magnitude F =qE.  

 

Although the net force on the dipole from the 

field is zero,  and the center of mass of the 

dipole does not move, the forces on the 

charged ends do produce 

a net torque t on the dipole about its center of 

mass.  

 

The center of mass lies on the line connecting 

the charged ends, at some distance x from one 

end and a distance d -x from the other end. 

The net torque is:  



22.9: A Dipole in an Electric Field: Potential Energy 

Potential energy can be associated with the orientation 

of an electric dipole in an electric field. 

 

The dipole has its least potential energy when it is in its 

equilibrium orientation, which is when its moment p is 

lined up with the field E. 

 

The expression for the potential energy of an electric 

dipole in an external electric field is simplest if we 

choose the potential energy to be zero when the angle q 

(Fig.22-19) is 90°. 

 

The potential energy U of the dipole at any other 

value of q can be found by calculating the work W done 

by the field on the dipole when the dipole is rotated to 

that value of q from 90°. 



Example, Torque, Energy of an Electric Dipole in an Electric Field 


